The synthetic compound CC-5079 is a potent inhibitor of tubulin polymerization and tumor necrosis factor-alpha production with antitumor activity.
نویسندگان
چکیده
We have found that the synthetic compound CC-5079 potently inhibits cancer cell growth in vitro and in vivo by a novel combination of molecular mechanisms. CC-5079 inhibits proliferation of cancer cell lines from various organs and tissues at nanomolar concentrations. Its IC(50) value ranges from 4.1 to 50 nmol/L. The effect of CC-5079 on cell growth is associated with cell cycle arrest in G(2)-M phase, increased phosphorylation of G(2)-M checkpoint proteins, and apoptosis. CC-5079 prevents polymerization of purified tubulin in a concentration-dependent manner in vitro and depolymerizes microtubules in cultured cancer cells. In competitive binding assays, CC-5079 competes with [(3)H]colchicine for binding to tubulin; however, it does not compete with [(3)H]paclitaxel (Taxol) or [(3)H]vinblastine. Our data indicate that CC-5079 inhibits cancer cell growth with a mechanism of action similar to that of other tubulin inhibitors. However, CC-5079 remains active against multidrug-resistant cancer cells unlike other tubulin-interacting drugs, such as Taxol and colchicine. Interestingly, CC-5079 also inhibits tumor necrosis factor-alpha (TNF-alpha) secretion from lipopolysaccharide-stimulated human peripheral blood mononuclear cells (IC(50), 270 nmol/L). This inhibitory effect on TNF-alpha production is related to its inhibition of phosphodiesterase type 4 enzymatic activity. Moreover, in a mouse xenograft model using HCT-116 human colorectal tumor cells, CC-5079 significantly inhibits tumor growth in vivo. In conclusion, our data indicate that CC-5079 represents a new chemotype with novel mechanisms of action and that it has the potential to be developed for neoplastic and inflammatory disease therapy.
منابع مشابه
The Synthetic Compound CC-5079 Is a Potent Inhibitor of Tubulin Polymerization and Tumor Necrosis Factor-A Production with Antitumor Activity
We have found that the synthetic compound CC-5079 potently inhibits cancer cell growth in vitro and in vivo by a novel combination of molecular mechanisms. CC-5079 inhibits proliferation of cancer cell lines from various organs and tissues at nanomolar concentrations. Its IC50 value ranges from 4.1 to 50 nmol/L. The effect of CC-5079 on cell growth is associated with cell cycle arrest in G2-M p...
متن کاملIranian Black Tea and Cowslip Extracts Induce Tumor Necrosis Factor-Alpha Secretion from Mouse Macrophage Cell Culture
Many species of tea (Camellia sinensis) and cowslip (Echium amoenum) are used in Iranian traditional medicine. The aim of this study was to conduct the survey on the ability of Iranian black tea and cowslip extracts on secretion of tumor necrosis factor-alpha (TNF-alpha) by non-infected and infected mouse macrophages. A macrophage infection model with Legionella pneumophila and enzyme linked im...
متن کاملIranian Black Tea and Cowslip Extracts Induce Tumor Necrosis Factor-Alpha Secretion from Mouse Macrophage Cell Culture
Many species of tea (Camellia sinensis) and cowslip (Echium amoenum) are used in Iranian traditional medicine. The aim of this study was to conduct the survey on the ability of Iranian black tea and cowslip extracts on secretion of tumor necrosis factor-alpha (TNF-alpha) by non-infected and infected mouse macrophages. A macrophage infection model with Legionella pneumophila and enzyme linked im...
متن کاملA Novel Nitrobenzoate Microtubule Inhibitor that Overcomes Multidrug Resistance Exhibits Antitumor Activity
Multidrug resistance is a major limitation for microtubule-binding agents in cancer treatment. Here we report a novel microtubule inhibitor (2-morpholin-4-yl-5-nitro-benzoic acid 4-methylsulfanyl-benzyl ester, IMB5046), its cytotoxicity against multidrug-resistant cell lines and its antitumor efficacy in animal models. IMB5046 disrupted microtubule structures in cells and inhibited purified tub...
متن کاملEvaluation of Tumor Necrosis Factor Alpha Polymorphism Frequencies in Endometriosis
Background The pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF-α), is a pathogenic element for a number of disorders. Previous studies have reported that the -1031 T/C and -238 G/A polymorphisms in the promoter region of the TNF-α gene are important factors in reproductive-related disorders. One of the most common gynecological diseases of women during the reproductive years is endo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 66 2 شماره
صفحات -
تاریخ انتشار 2006